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I. INTRODUCTION

An ongoing single-event phenomena (SEP) test program at the Jet Propulsion Laboratory
(JPL) and The Aerospace Corporatioiis continuing, in order to assess specific parts performance
for interplanetary and satellite environments and to establish trends in single-event upset (SEU)
response of an ever-increasing body of device data.....

In 1985, Nichols et al. 1 published the first nearly comprehensive listing of SEP test data for
186 parts. This presentation was updated in 19872 with the publication of data for 83 additional
parts. In this report, we extend the data base for 154 new parts. As before, the data are collected
according to technology, function, and manufacturer in order to permit trends, generalizations,
and data gaps to be identified. -- .
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II. TESTING APPROACHES

The experimental procedures used by JPL and Aerospace are evolutionary and are described
in detail elsewhere. 3,4 All data reported here use high energy accelerators-not isotope or other
simulation sources. A heavy ion beam of suitable uniformity is directed into a vacuum chamber,
where a movable test board and testing interface are mounted. Dosimetry is usually provided by
the test group, but the Battelle Northwest Laboratories (BNL) facility now offers this service for
their dedicated SEP line Teqt interfaces are unique to each part, although some attempts have
been made to design "universal interfaces." Tests of complex parts, st.¢h as large-scale integration
(LSI) random access memories (RAMs) and microprocessors, require special care and usually do
not entail a test of every element for every code configuration. Microprocessor tests, for example,
might be chosen to yield worst-case linear energy transfer (LET) data (equivalent to the LET
threshold for the whole device) and not to yield the overall device cross section.

Tests for transient effects-defined as those disturbances that last for a finite time-are
occasionally implemented at the same time as tests for their "infinite" lived cousins-the SEU.
Transient effects are not often reported, probably because test procedures are often not set up to
measure them-not because of a general scarcity of this phenomenon. Transients are also more
elusive than SEUs: they depend upon on-chip design, layout geometries, and other configuration
aspects that may mask or augment their detection.

Both transients and "soft" upsets should be of concern to the system designer. Catastrophic
effects like latchup, transistor burnout, and other permanent effects require a separate system
evaluation.
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III. ORGANIZATION AND SCOPE OF DATA

This repoi. summarizes soft error and latchup experimental test data from JPL and The
Aerospace Corporation during the 2-year period from January 1987 through December 1988. In
a6dition, data from the Combined Release and Radiation Effects Satellite (CRRES) program,
stored at JPL for the last several years, is released for the first time-except for proprietary
developmental data on GaAs devices. Not included are data generated by Defense Nuclear
Agency (DNA) subcontractors who used JPL hardware, nor the new, fairly extensive data set on
power metal-oxide semiconductor field-effect transistor (MOSFET) burnout obtained by other
subcontractors. Much smaller SEP data sets have been generated by other U.S. and foreign
researchers. 5 The SEP data presented here and in two previous reports1,2 represent a substantial
majority of all test data obtained on SEP throughout the world.

The data from JPL and Aerospace are combined in this report, but there are minor
differences in the data from each organization. JPL defines the threshold LET as that value of
LET where soft errors are first counted at fluences of 106 ions/cm 2. Aerospace has redefined their
LET threshold as occurring at that point where the measured upset cross section is 1% of the
measured maximum cross section. These two values may be quite different.* To obtain accurate
SEU rates for a prescribed radiation environment, one requires a plot of cross section vs LET,
which may be available from the parent test organization.**

The data are conveniently divided into two tables: Table 1 for metal-oxide semiconductor
(MOS) devices and Table 2 for bipolar devices. All data listed are substantially abbreviated and
ignore statistical features altogether. SEP tests are measured with a dynamic nominal bias;
latchup tests are performed at the maximum value of the nominal bias range in order to enhance
the possibility of latchup. Cross sections are given for Kr ions at normal incidence, corresponding
to LET = 37 MeV/mg/cm 2. The label "no upset" also refers to the situation at LET = 37. For
devices having a low LET threshold, the tabulated cross section may be equal to the maximum
saturation cross section; but at higher LETs, the maximum cross section will be larger than the
tabulated value (and may or may not have been found). Unreported transients and higher test
temperature measurements exist for some parts. Hence, a system designer interested in a specific
part is again urged to contact the appropriate test organization for further information.

* The use of a LET threshold defined as a stated percentage of a maximum (saturated) cross section
attempts to establish a practical lower bound for the purpose of estimating upset rates. The discrepancy
between this definition and JPLs definition becomes academic when a complete cross section is used in
rate calculations.

** At JPL, more detailed data are available in Reference 6 or in the RADATA computer bank.
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1IDA06617 PROM O4OSdAP HAR 2Ll 12 7 x 0-5 Sunnre only DNL Laa~ahq, Lbi 2D. (Oct& Dec.
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IV. TRENDS

Some trends in the recent data are offered here. (1) Two 8-bit microprocessors-the Sandia
SA3000 and its equivalent, the Harris HS8OC85RH-were tested and found to be hard.***
However, 16-bit and 32-bit microprocessors were much softer. (2) The tested microprocessor
peripherals were invariably harder than the parent microprocessor. (3) Parts operated at a higher
bias were more resistant to soft errors. (4) None of the STM (France) and TI 54HCxxx logic
device families could be made to latch up, even when tested at a slightly elevated temperature
(600 C). The data here include a retest of the TI 54HC161 and 54HC165, both of which exhibited
latchup in previous tests.2 The previous two parts and most of the present parts are
complementary metal-oxide semiconductor (HCMOS) p-well/bulk devices, but some of the earlier
data were also for twin-well technology parts. (5) Our intuition that 54HCTxxx devices will behave
similarly to 54HCxxx devices is supported by a very limited data set of the former devices. (6)
Test data for the 54AC373 and 54ACT373 latches suggest that this technology is susceptible to
latchup. (7) Miscellaneous new data were taken for analog switches, bilateral switches, gate
arrays, and programmable read-only memories (PROMS). (8) Several analog-to-digital (A/D)
converters were tested to try to establish their LET thresholds. Anomalous device-to-device and
test-to-test disparities remain to be resolved.**** However, two bipolar digital-to-analog
converters (DACs) had a respectably high LET threshold of 15 MeV/mg/cm 2. (9) CMOS RAMs
continued to exhibit a wide range of SEU response. The Marconi MA6116 and Honeywell
HC6167R 16K RAMs, using CMOS/silicon-oxide semiconductor (SOS) and feedback resistors,
respectively, proved to be very hard. (10) NMOS technology, whether as high density dynamic
random access memory (DRAM) or 4K RAMs, had a very low LET threshold. (11) Many new
tests were made at higher temperatures-not usually indicated in the tables. When this was done,
the parts tested at higher temperatures were always more susceptible to soft errors or latchup.

In this context, the term "hard" refers to a part that does not upset with 150 to 350 MeV Kr at nor-

mal incidence.

**** Inconsistencies in repeat test data for the ADCs are seen. JPL believes that special test techniques
may be required to understand SEUs' effects on ADCs.
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V. CONCLUSIONS

The new data presented here can be combined with data given in References 1 and 2 to
provide certain generalizations useful for protecting flight electronics from SEP. Hard technologies
and unacceptably soft technologies can be flagged. In some instances, specific tested parts can be
taken as candidates for key microprocessors or memories. As always with radiation test data,
specific test data for qualified flight parts are recommended for critical applications. Calculations
of accurate SEP rates will require the assistance of a computer code, a well-defined environment
(in terms of flux vs LET), and a complete device characterization (cross section vs LET at the
appropriate temperature.)
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APPENDIX
MANUFACTURER ABBREVIATIONS

ADI Analog Devices, Inc.

ALT Alpha Industries, Semiconductor Division

AMD Advanced Microdevices Corporation

CYP Cypress CoJrporation

EDI EDI Corporation

FSC Fairchild Corporation, Semiconductor Division

HAR Harris Corporation, Harris Semiconductor Division

HIT Hitachi Ltd.

HON Honeywell, Inc.

IDT Integrated Devices Technology, Inc.

INM INMOS Corporation

INT Intel Corporation

LED Lockheed Corporation

LSI LSI Logic Corporation

MED Marconi Electronic Devices

MIC Micron Technologies

MMI Monolithic Memories, Inc.

MNC Micro Networks

MTA Mattra Harris Semiconductor

NSC National Semiconductor Corporation

OWl Omni-Wave, Inc.

PFS Performance Semiconductor Corporation

SGN Signetics Corporation

SIL Siliconix, Inc.

SNL Sandia National Laboratories

SNY Sony Corporation

SRT Saratoga Semiconductor, Inc.
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STM STM (France)

STX Supertex, Inc.

TIX Texas Instruments, Inc.

TRW TRW, Inc.

VTC VTC, Inc.

VTN Vectron Corporation

ZIL Zilog
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LABORATORY OPERATIONS

The Aerospace Corporation functions as an "architect-engineer" for national security
projects, specializing in advanced military space systems. Providing research support, the
corporation's Laboratory Operations conducts experimental and theoretical investigations that
focus on the application of scientific and technical advances to such systems. Vital to the success
of these investigations is the technical staff's wide-ranging expertise and its ability to stay current
with new developments. This expertise is enhanced by a research program aimed at dealing with
the many problems associated with rapidly evolving space systems. Contributing their capabilities
to the research effort are these individual laboratories:

Aerophysics Laboratory: Launch vehicle and reentry fluid mechanics, heat transfer
and flight dynamics; chemical and electric propulsion, propellant chemistry, chemical
dynamics, environmental chemistry, trace detection; spacecraft structural mechanics,
contamination, thermal and structural control; high temperature thermomechanics, gas
kinetics and radiation; cw and pulsed chemical and excimer laser development,
including chemical kinetics, spectroscopy, optical resonators, beam control, atmos-
pheric propagation, laser effects and countermeasures.

Chemistry and Physics Laboratory: Atmospheric chemical reactions, atmospheric
optics, light scattering, state-specific chemical reactions and radiative signatures of
missile plumes, sensor out-of-field-of-view rejection, applied laser spectroscopy. laser
chemistry, laser optoelectronics, solar cell physics, battery electrochemistry, space
vacuum and radiation effects on materials, lubrication and surface phenomena,
thermionic emission, photosensitive materials and detectors, atomic frequency stand-
ards, and environmental chemistry.

Electronics Research Laboratory: Microelectronics, solid-state device physics,
compound semiconductors, radiation hardening; electro-optics, quantum electronics,
solid-state lasers, optical propagation and communications; microwave semiconductor
devices, microwave/millimeter wave measurements, diagnostics and radiometry, micro-
wave/millimeter wave thermionic devices; atomic time and. frequency standards;
antennas, rf systems, electromagnetic propagation phenomena, space communication
systems.

Materials Sciences Laboratory: Development of new materials: metals, alloys,
ceramics, polymers and their composites, and new forms of carbon; nondestructive
evaluation, component failure analysis and reliability; fracture mechanics and stress
corrosion; analysis and evaluation of materials at cryogenic and elevated temperatures
as well as in space and enemy-induced environments.

Space Sciences Laboratory: Magnetospheric, auroral and cosmic ray physics,
wave-particle interactions, magnetospheric plasma waves; atmospheric and ionospheric
physics, density and composition of the upper atmosphere, remote sensing using
atmospheric radiation; solar physics, infrared astronomy, infrared signature analysis;
effects of solar activity, magnetic storms and nuclear explosions on the earth's
atmosphere, ionosphere and magnetosphere; effects of electromagnetic and particulate
radiations on space systems; space instrumentation.


